On surfaces with zero vanishing cycles

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zero-cycles on Hilbert-blumenthal Surfaces

Introduction. The main object of study in this paper with respect to zero-cycles is a special class of Hilbert-Blumenthal surfacesX, which are defined overQ as smooth compactifications of quasi-projective varieties S/Q, more precisely, of coarse moduli schemes S that represent the moduli stack of polarized abelian surfaces with real multiplication by the ring of integers in a real quadratic fie...

متن کامل

Vanishing Vanishing Cycles

If A• is a bounded, constructible complex of sheaves on a complex analytic space X, and f : X → C and g : X → C are complex analytic functions, then the iterated vanishing cycles φg[−1](φf [−1]A •) are important for a number of reasons. We give a formula for the stalk cohomology H∗(φg[−1]φf [−1]A •)x in terms of relative polar curves, algebra, and the normal Morse data and micro-support of A•.

متن کامل

The arithmetic of zero cycles on surfaces with geometric genus and irregularity zero

Let X be a smooth, projective, geometrically irreducible surface over a perfect field F. Throughout this paper, it will be assumed that the geometric genus pg and the irregularity q of X both vanish. Denote the separable closure of F by F. Let X=X| be the surface obtained from X by base extension. It will also be assumed that the group Ao(X) of rational equivalence classes of zero cycles of deg...

متن کامل

Zero cycles on certain surfaces in arbitrary characteristic

Let k be a field of arbitrary characteristic. Let S be a singular surface defined over k with multiple rational curve singularities and suppose that the Chow group of zero cycles of its normalisation S̃ is finite dimensional. We give numerical conditions under which the Chow group of zero cycles of S is finite dimensional.

متن کامل

Vanishing Cycles and Mutation

Using Floer cohomology, we establish a connection between Picard-Lefschetz theory and the notion of mutation of exceptional collections in homological algebra.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Manuscripta Mathematica

سال: 2014

ISSN: 0025-2611,1432-1785

DOI: 10.1007/s00229-014-0672-z